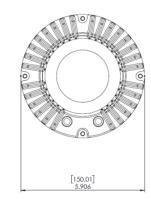
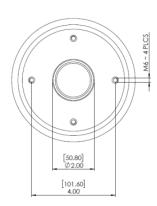
950NeoPB-8/16 2" exit HF driver

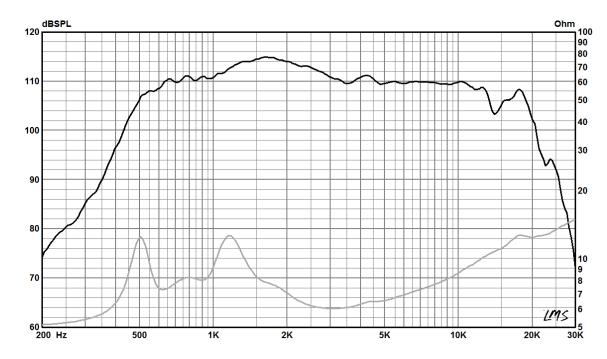
- Delivers extreme max SPL output
- transparent, high resolution sound
- low compression ratio phasing plug and fast expanding exit adapter eliminates typical compression driver distortion
- unparalleled HF extension in its class
- withstands long term extreme stress operation with high peak factor
- compact design, ideal for touring line arrays and top tier sound systems where light weight and very high SPL is required
- proprietary processed and hardened aerospace grade Aluminum alloy diaphragm with highest tensile strength to weight ratio guarantees long term fatigue resistance, extended HF and accurate signal peak reproduction
- heat stabilized polymer surround ensures low distortion at high SPL and long term performance stability
- high performance 101.6 mm (4") edgewound, copper clad aluminum wire VC
- 250 W continuous program power
- self-aligning diaphragm assembly facilitates service in the field

SPECIFICATIONS


Nominal exit diameter	2"/51 mm
	•
Rated impedance	8/16 Ω
Power handling ¹	125 W
Continuous program power ²	250 W
Sensitivity ³	113 dB
Rated frequency range⁴	500 Hz –22 kHz
Recommended min. XO frequency ⁴	500 Hz
Re	5.4/9.2 Ω
Minimum impedance	6.8/ 10.2 Ω
Diaphragm material	structural aluminum alloy
Voice coil diameter	101.6 mm (4")
Voice coil winding	edge-wound ribbon
Voice coil wire	copper-clad aluminum
Voice coil former	high temperature polyimide
Magnet	neodymium ring
Exit angle⁵	21°

Mounting and mechanical parameters


Mounting	4 x M6 on Ø101.6mm (4")
Overall diameter	118.6 mm (4.67 in)
Overall depth	55 mm (2.17 in)
Net weight	2.09 kg (4.6 lbs.)
Shipping weight	2.72 kg (6.0 lbs.)


Optional accessories

Replacement diaphragm assembly 1245-8/16

Frequency response and impedance of 950 NeoPB-8 on specified horn, free field ³.

Specifications notes

- 1. AES2-1984 Rev.2003.
- 2. Continuous program power is defined at 3dB higher than AES power and reflects power handling capacity for typical music and cinema content reproduction.
- 3. Driver mounted on horn with 90°x60° nominal coverage and following dimensions: 229 mm (9") mouth width, 191 mm (7.5") mouth height, 185mm (7.3") horn depth. Measured at 1W/1m in simulated free field conditions as per AES 2-2012 and IEC 60268-5 (Ed.3.1 2007-09). Sensitivity is calculated based on SPL frequency response at 1W/1m, averaged in 700Hz 5 kHz band.
- 4. Specified in accordance with IEC 60268-5 (Ed. 3.1 2007-09). Defines recommended operating frequency band for typical application with 24 dB/Oct. high pass filter and matching horn with low cut-off point. If lower filter slope rate is used, a higher XO point is recommended. Higher XO frequency is recommended, if higher max SPL is required.
- 5. Total flare angle of conical exit. The angle should be considered for proper coupling with a waveguide/horn. The waveguide/horn throat expansion angle and shape should provide smooth continuity of mated surfaces for best results. The driver exit angle and its integration with a horn will also affect dispersion at very high frequencies.